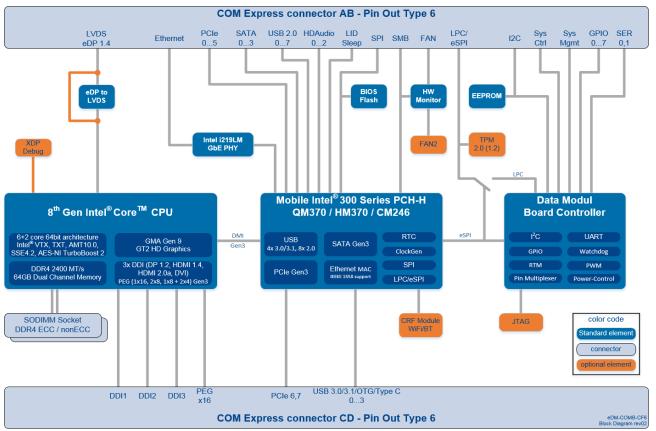


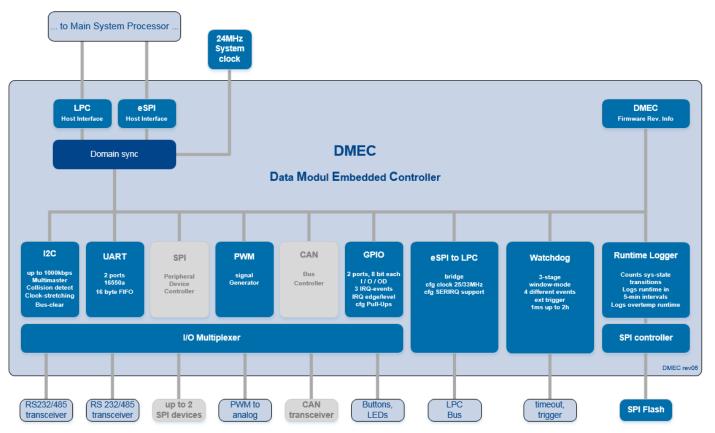
All Technologies. All Competencies. One Specialist.



eDM-COMB-CF6

COMe Block Diagram

Data Modul Embedded Controller (DMEC)


- ☐ Provides functionality which may not be available in the chipset:
 - UART
 - Watchdog
 - ☐ I2C Controller
 - ☐ GPIOs
 - □ Running Time Logger
 - PWM Controller
 - ☐ CAN, SPI & other functions upon request
- Maintains HW and SW compatibility accross different platforms!!!

Implementation Overview

- ☐ Implemented in FPGA
 - ☐ Currently Intel MAX10, scalable @ 2k/4k/8k logical elements in identical package.
 - ☐ FPGA also manages power sequencing and glue logic
- ☐ Connected to the host either via LPC bus (past and current platforms) or eSPI bus (future platforms).
- ☐ Field-upgradable via Software from EFI shell.

DMEC Block Diagram

Host Interface (LPC or eSPI)

- ☐ LPC up to 33MHz LPC input clock, eSPI up to 50MHz/Quad I/O
- □ eSPI slave supports up to 50MHz/Quad I/O, peripheral and virtual wire channels
- ☐ Supports byte/word/dword I/O access
- ☐ Supports Serial IRQ (either direct or via eSPI virtual wire channel)
- Supports I/O mapped Index/Data (fixed address) and linear addressing (configurable address) for configuration registers
- No support for memory and FWH cycles
- No DMA support

eSPI to LPC Bridge

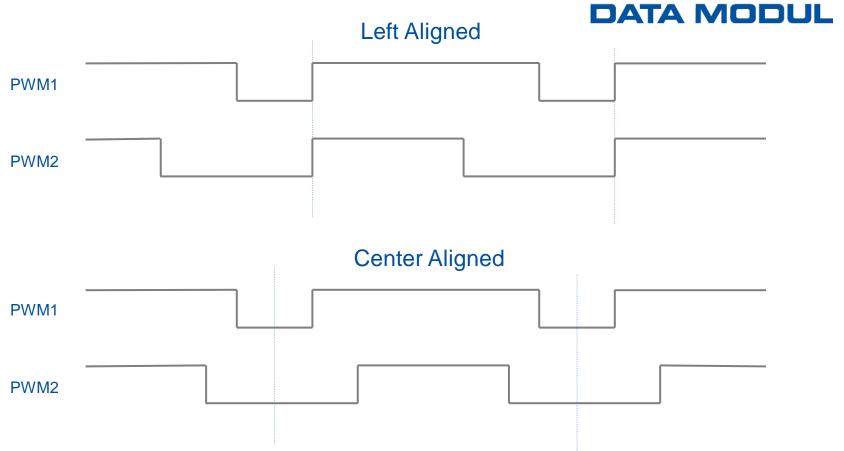
- ☐ Provides basic LPC support for future chipsets w/o native LPC bus
- ☐ LPC Clock 25MHz or 33MHz, configurable via BIOS setup
- ☐ LPC Serial IRQ support, configurable via BIOS setup
- No support for LPC memory and FWH cycles
- No LPC DMA support

GPIOs

- ☐ Up to two banks with 8 pins each
- ☐ Individually configurable as input or output
- ☐ Alternate functions configurable via Port Integration Module (PIM)
- ☐ Supports event generation on falling/rising/both edges and low level
- ☐ Event signaling via IRQ/NMI/SCI, event signaling configurable per bank.
- Separate Clear/Set bits, allows clear/set with a single I/O access instead of read/modify/write
- ☐ Configurable via BIOS setup (usage, direction and initial level)

I2C Controller

- □ I²C bus standard 3.0 compliant, Master only
- ☐ Interrupt supported, byte-wise transfer
- Multi-master capable
- ☐ Arbitration and bus collision and busy detection
- Supports clock stretching
- ☐ Bus-clear feature allows bus recovery if SDA held low by a slave
- Supports Fast Mode Plus
- ☐ I2C Clock (theoretically) scalable from 100bps up to 2Mbps
- ☐ Can control multiple I²C-busses through multiplexer
- ☐ Configurable via BIOS setup



PWM

- ☐ Two 8-bit channels, can be combined to one 16-Bit channel for better resolution
- ☐ Programmable period and double buffered duty cycle registers
- □ 50MHz source clock with programmable Pre-scalers allows for a wide granularity range from 20ns up to ~653µs

Pre-scaler	Granularity	Max. Period (center aligned)	Min. Period (left aligned, 8 steps)
1	20ns	2.621ms (20ns * 0xFFFF * 2)	160ns
128*65535	652.8µs	85.564s	5222µs

- □ Configurable polarity
- Programmable waveform alignment per channel: center or left aligned
- PWM pins configurable via BIOS setup

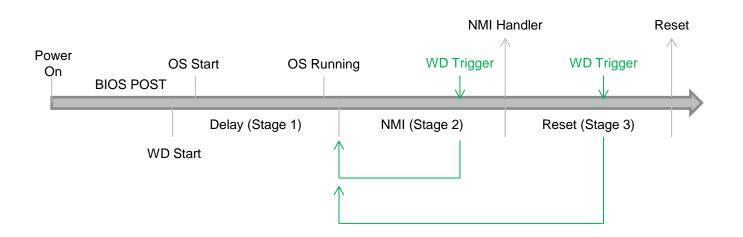
PWM: Waveform alignment

Running Time Logger

- ☐ Records running time and number of boot events
- ☐ 24-Bit counters for running time
 - ☐ Granularity 1 minute (~32years to overflow)
 - □ Saved to non-volatile storage every 5 minutes to prevent premature wear-out of external flash device.
- ☐ Optional second running time counter records out-of-specification (OOS) running time, i.e. time the board was running while one or more parameters were outside the specified range for normal operation
- 24-Bit counters for boot events (power-on/reset)
- ☐ Optional second boot counter can record custom boot events (e.g. GPIO toggle)
- ☐ Current values displayed in BIOS setup.

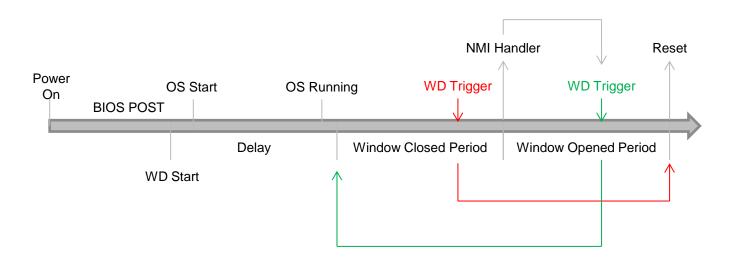
UART

- ☐ Up to two UARTs supported, RX/TX only
- □ Handshake signals for UART0 optionally available on GPIO pins (configurable in BIOS setup)
- ☐ fully 16550A compliant register set, including 16 Byte FIFO
- □ Supports legacy resources 0x2F8/0x2E8/0x3F8/0x3E8 @ IRQ3/4/5/7/10/11
- ☐ Supports standard Baud rates with standard dividers
- Reported to OS via ACPI and detected as standard devices, no extra drivers required
- ☐ Configurable via BIOS setup



Watchdog

- ☐ Up to three configurable stages
- Supports standard timeout mode and Window mode for safety critical applications
- ☐ Different events (e.g. SMI, SCI, NMI, RESET, WDOUT) configurable per stage
- Supports auto-reload
- Supports register-lock
- ☐ Granularity 1ms (timeout 1ms 65s) or 128ms (timeout 128ms 140min)
- ☐ Configurable via BIOS setup



17

Watchdog: Standard mode example flow

Watchdog: Window mode example flow

Port Integration Module

- ☐ Allows multiplexing of DMEC pins with alternate functions
- ☐ Configuration handled by BIOS

Signal	Native Function	ALT1	ALT2	ALT3	Usage
		•	GPIO Port B	-	
GPIO PB0	PB0				M
GPIO PB1	PB1				M
GPIO PB2	PB2				M
GPIO PB3	PB3				м
GPIO PB4	PB4				М
GPIO PB5	PB5				М
GPIO PB6	PB6				м
GPIO PB7	PB7				M
		•	GPIO Port A	-	-
GPIO PA0	EXT_GPIO0	SPI0_MOSI	•	1.	С
GPIO PA1	EXT_GPIO1	SPI0_MISO		· ·	С
GPIO PA2	EXT_GPIO2	SPI0_CLK		UARTO_DSR	С
GPIO PA3	EXT_GPIO3	SPI0_CS0#	·	·	С
GPIO PA4	EXT_GPIO4	SPI0_CS1#	PWM0	UARTO_CTS	С
GPIO PA5	EXT_GPIO5	WDTRIG#	PWM1	UARTO_RTS	С
GPIO PA6	EXT_GPIO6	I2C2_SCL		UART0_DTR	С
GPIO PA7	EXT_GPIO7	I2C2_SDA	·	·	С
	-	-	UART 0/1		
TxD0	TxD0		1.		С
RxD0	RxD0	·	·	·	С
TxD1	TxD1	CAN0_TxD		·	С
RxD1	RxD1	CAN0_RxD	·	·	С
			SPI Controller		
SPI1_MOSI	SPI1_MOSI				M
SPI1_MISO	SPI1_MISO			· ·	M
SPI1_CLK	SPI1_CLK			·	M
SPI1_SC0#	SPI1_SC0#		· ·	·	M
			Watchdog		·
WDT	WDT				C
WDTRIG#	WDTRIG#			•	Q7
	·		I2C Controller	·	
I2C0_SDA	I2C0_SDA				C
I2C0_SCL	I2C0_SCL			·	С
I2C1_SDA	I2C1_SDA				M
I2C1_SCL	I2C1_SCL			·	M

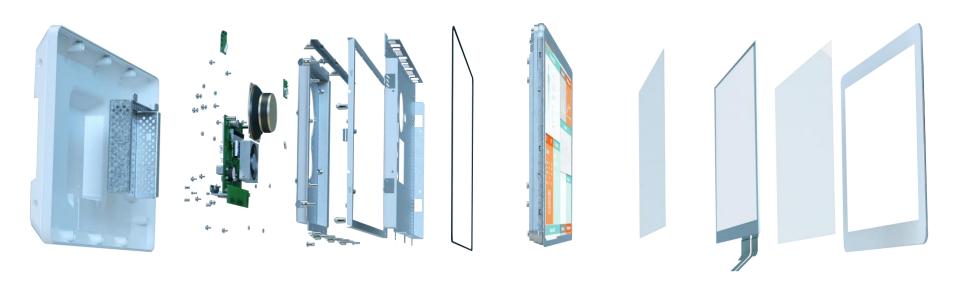
DMEC PIM native and alternate functions

DMEC General Registers

- □ Feature support can be probed via register flags, allows generic SW implementation
- □ Versioning information for DMEC core and FPGA instance as well as individual devices
- ☐ Centralized configuration of DMEC devices (I/O addresses and IRQs) in a conflict-free manner
- ☐ Centralized identification of interrupt sources

uC vs FPGA

- □ uC Pros:
 - May easily implement complex functionality.
 - ☐ Can be maintained by any software developer
 - May support host CPU offloading.
- ☐ FPGA Pros:
 - □ Supports implementation of legacy interfaces (e.g. 16550 UART @ legacy Addresses).
 - ☐ Functionality is always deterministic (incl. control of power timings)
 - Adding new functionality does not impact existing functions



OS Support

☐ EAPI drivers available for Windows and Linux

All Technologies. All Competencies. One Specialist.

